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Abstract
The tunneling lifetimes of quasi-resonant states for electrons in various kinds of generalized
Fibonacci and generalized Thue–Morse GaAs–AlxGa1−xAs superlattices have been evaluated
numerically under variable dc bias conditions. All the quasi-periodic systems have been framed
using the generalized block model. The variation of the lifetime at different quasi-resonant
levels with respect to the external dc field undergoes a remarkable change due to the effect of
quasi-periodicity. The occurrence of a minimum value of the average lifetime and its
dependence on quasi-periodicity have been analyzed. It is shown that the low-order
quasi-periodicity in the case of the generalized Fibonacci superlattice and the high-order
quasi-periodicity for the generalized Thue–Morse superlattice hold promise for potential device
applications. The impact of an increase in the number of barriers on the tunneling lifetime has
also been studied exhaustively.

1. Introduction

The problem of resonant tunneling phenomena in semicon-
ductor multibarrier heterostructures has long been of great
interest, since the pioneering work of Tsu and Esaki [1]
in the early 1970s. The widely discussed features such
as the transmission coefficient, resonant tunneling energy
levels, density of states, tunneling lifetime and traversal time
which provide signatures of resonant tunneling have profound
importance in potential device applications. Although the
fundamental properties of tunneling are well understood
conceptually, the significance still needs to be unraveled
for some of them. For example, the well known resonant
tunneling lifetime, which is of great importance in explain-
ing the carrier transport in one-dimensional superlattices,

4 Address for correspondence: Department of Physics, Prabhat Kumar
College, Contai, PO Contai, District Purba Medinipur, West Bengal, Pin-
721401, India.

remains very controversial and debatable. A thorough
knowledge of the aforesaid lifetime is very much required for
accuracy and appropriate applicability for extracting the best
performance from high-speed electronic and optoelectronic
devices like lasers, modulators, photo-detectors and signal
processing devices. Most of the previous theoretical works on
resonant tunneling lifetimes in double-barrier systems [2–7],
periodic multibarrier systems [8] and periodic superlattices
(PSLs) [9–13] are limited to the field-free condition. The
appearance of a special kind of minima in tunneling lifetime
spectra and their explanation based on the infinite Kronig–
Penney model are reported by Khan et al [8] in the case of
unbiased periodic multibarrier systems with N > 3 (N being
the number of barriers). When such a system is subjected to
a dc field, the former resonant tunneling energy states in the
unbiased condition get Stark shifted giving rise to Stark states.
Though resonant tunneling corresponds to unit transmission
coefficient in the field-free case, the transmittance for some
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of the Stark states becomes less than unity. Tunneling states
of this type are referred to as quasi-resonant tunneling states
and the lifetime of these states is called the quasi-resonant
tunneling lifetime (QRTL). At low and medium field strength,
the separations between the consecutive states are not the
same. But when the applied electric field (E) satisfies the
inequality [14]

eEd > 1
2�εm, (1.1)

d being the periodicity of the superlattice and �εm the
maximum level separation in a miniband of the PSL, the Stark
states start to be spaced equally, forming a ladder around the
center of the miniband. This ladder-like energy spectrum
shows the onset of the partial Wannier–Stark ladder (WSL).
More and more states join the ladder with increase of the field
strength. Recently, the WSL has been exploited in tunable
quantum cascade lasers and for realizing this the QRTL of
these states needs to be determined. We have reported [15]
anomalous behavior of the carrier lifetime for the Stark states
in the case of periodic superlattices, where the carrier transport
has been explained on the basis of the WSL. The minimum
value of the average QRTL that corresponds to the selection
of carriers of a maximum velocity through the system and the
corresponding electric field strength have been defined as the
characteristic parameters for PSLs consisting of a particular
number of barriers.

Although exhaustive studies on the resonant tunneling
lifetime in the case of PSLs have been performed both
experimentally and theoretically, the research on the tunneling
lifetime in aperiodic systems is still gaining momentum.
The discovery of quasi-crystals has accelerated the study
of aperiodic superlattices (ASLs) arranged according to the
standard generalized Thue–Morse and generalized Fibonacci
sequences. The quasi-periodic system, an intermediate
between a perfectly ordered system and a disordered system,
deserves special attention in the study of unique electronic and
optical properties [16] different from the above two extreme
cases. Ideal ASL shows a highly fragmented and fractal-
like electronic spectrum with self-similar patterns, with the
presence of localized, extended and critical states [17, 18].
A lot of theoretical works regarding the band structures [19],
transmission properties [20, 21], density of states [22],
localization of wavefunctions [23–25], trace maps and
Landauer resistances [26–28] etc in ASL have been reported
both in the absence and in the presence of externally applied
dc electric fields. Recently, we have calculated the current
density of the Fibonacci superlattice [29] and have shown
that such ASL can behave as band-pass or band-eliminator
semiconductor devices. Moreover, the degree of aperiodicity
has a profound effect in negative differential conductivity
regions, which must be considered prior to device applications.
Although the generalized Fibonacci sequence is in frequent
use for studying the transport properties in ASLs, the use of
the generalized Thue–Morse sequence is quite limited both
in theory and experiment. Further, little attention [21] has
been paid to the study of the QRTL in the case of aperiodic
systems like the generalized Fibonacci superlattice (GFSL) and
generalized Thue–Morse superlattice (GTSL) in the presence

of a homogeneous electric field and the present intention is to
report on an effort in this direction.

In the following study we have presented a detailed
analysis of the QRTL in the case of aperiodic superlattices
(e.g., GFSL, GTSL) as well as for a periodic one, both in
the presence and in the absence of external dc fields. For
the calculation of the QRTL across multibarrier systems, our
theoretical model is based on the transfer-matrix formalism
using an exact Airy function approach and a search
technique [13, 15]. The beauty of this method is that it is
straightforward and gives the same order of accuracy as those
shown in other works [30–33]. Moreover, an account of the
mean or average value of the QRTL has also been given for the
different structures mentioned above.

2. Models for different superlattices

In the present theoretical model, both the periodic and
generalized aperiodic superlattice structures have been grown
along the z-axis starting from two basic building blocks A and
B [23]. Here the block A (B) consists of a rectangular quantum
well of thickness a and a rectangular barrier of thickness b (b′).

The present block model of the PSL has been generated by
iterating A and B alternately, so that the t th generation of the
system is given by St = t[AB], where t stands for the number
of repetitions. This model is different from the typical one [15]
in the sense that here two barriers (instead of one) of different
widths separated by a well appear periodically.

The t th generation of any kind of generalized Fibonacci
sequence [34] has been framed using the following recursion
rule: St = [m[St−1] · n[St−2]], for t > 0. Here m and n give
the number of repetitions of the associated generation and the
centered dot denotes concatenation of strings. A given pair
of values (m, n) represents a particular kind of generalized
Fibonacci sequence, e.g., (m = 1, n = 1), (m = 2, n = 1)
and (m = 1, n = 3) are the first, second and third kinds,
respectively. The initial conditions for the generation of any
kinds of such sequences are chosen as S−1 = B and S0 = A.

The different generalized Thue–Morse sequences [27]
have been obtained using the iteration formula St =
[m[St−1] · n[S̄t−1]], for t > 0. S̄t−1 is the complement of
St−1 obtained by interchanging A and B. In this case the pairs
of values (1, 1), (2, 2) and (1, 3) for (m, n) are referred to
as first, second and third kinds of generalized Thue–Morse
sequences, respectively. Here the initial condition is chosen
as S0 = {A,B} for all kinds.

For both the blocks A and B, a small gap material GaAs
is taken as the well region, and the well width, a, consists of
five cells, whereas a large gap material Alx Ga1−x As acts as
the barriers of variable thicknesses (b and b′) consisting of
five and six cells for A and B blocks, respectively. The first
few generations of the three kinds of generalized Fibonacci
and Thue–Morse sequences are presented in tables 1 and 2.
From these tables it is understood that in both the sequences
the quasi-periodicity increases more in a higher kind than in a
lower kind [28].
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Table 1. A few initial generations of generalized Fibonacci sequences for different values of m and n with initial conditions S−1 = B and
S0 = A.

t St St = [1[St−1] · 1[St−2]] St St = [2[St−1] · 1[St−2]] St St = [1[St−1] · 3[St−2]]
1 S1 AB S1 AAB S1 ABBB
2 S2 ABA S2 AABAABA S2 ABBBAAA
3 S3 ABAAB
4 S4 ABAABABA
5 S5 ABAABABAABAAB

Table 2. A few initial generations of generalized Thue–Morse sequences for different values of m and n with initial condition S0 = {A,B}.
t St St = [1[St−1] · 1[S̄t−1]] St St = [2[St−1] · 2[S̄t−1]] St St = [1[St−1] · 3[S̄t−1]]
1 S1 ABBA S1 ABABBABA S1 ABBABABA
2 S2 ABBABAAB
3 S3 ABBABAABBAABABBA

3. A brief formulation for computing the QRTL

To deal with the present problem one has to consider the one-
dimensional time-independent Schrödinger equation for the
electron in the potential V (z), which appears as

− h̄2

2m∗
1,2

d2ψ1,2

dz2
+ V (z)ψ1,2 = εψ1,2 (3.1)

where the subscripts and superscripts, 1 and 2, stand for
the corresponding parameters in the well and barrier regions,
respectively. Here, ε and m∗ represent the incident energy and
effective mass of the electron. The potential energy profile
V (z) for the superlattice with a homogeneous electric field E
applied along the growth direction (z-axis) between z = 0 and
l is represented by

V (z) =
{

V0 − eEz for znL � z � znR

−eEz otherwise,
(3.2)

where V0 is the potential barrier height and e the electronic
charge, znL and znR being the left and right boundaries of the
nth barrier, respectively.

Using exact Airy function formalism, (3.1) can be solved
for the wavefunctions in the well and barrier regions. Then
applying effective-mass-dependent boundary conditions [35],
one can find the transfer matrix ([Mn]) that correlates the
amplitudes of the wavefunctions to the right (A2n+1 and B2n+1)
of the nth barrier with those to the left (A2n−1 and B2n−1) of the
same barrier, given by[

A2n+1

B2n+1

]
= [Mn]

[
A2n−1

B2n−1

]
. (3.3)

Ultimately, the transfer matrix that correlates the amplitudes of
the wavefunctions for z < 0 (A0 and B0) and z > l (AF and
BF ) takes the form[

AF

BF

]
= [F]

N∏
n=1

[Mn][I ]
[

A0

B0

]
= [WN ]

[
A0

B0

]
(3.4)

where [WN ] = [F] ∏N
n=1 [Mn][I ] and N is the number of

barriers. Here, the transfer matrices designated by [I ] and [F],

respectively, correlate the amplitudes of the wavefunctions to
the left and right of z = 0 and l, respectively.

Finally, the coefficient of transmission (τc) across the N-
barrier superlattice [29, 36] can be given by

τc = |AF |2
|A0|2

=
∣∣∣∣det[WN ]
(WN )22

∣∣∣∣
2

. (3.5)

Using the relation (3.5) we have, first of all, computed τc for a
range of energies (ε < V0) for the incident electron at different
values of the dc field. From the transmission spectrum for a
particular value of the field, the energy (εm) corresponding to
the quasi-resonant transmission peaks and the energies on both
sides of the peak corresponding to τc at half of the transmission
maxima have been obtained numerically. From the difference
of the two energies corresponding to half-maxima one can find
the halfwidth at half-maximum (�εm) corresponding to the
quasi-resonant energy, εm.

At the end, these numerical values of �εm are used to
calculate the QRTL (τ ) on the basis of an energy uncertainty
relation given by [2]:

τ = h̄

2�εm
. (3.6)

4. Numerical analysis

In the present work the comparative analysis of the
QRTL, among the different multibarrier systems, has been
performed with the incident electron energies in the below-
barrier condition (ε < V0). Here, the basic system is
considered as a GaAs–Al0.3Ga0.7As superlattice, choosing the
conduction band discontinuity or the barrier height (V0) to
be 370.1 meV [37]. It may be mentioned that in the below-
barrier condition, only one allowed energy miniband exists
for all the systems under investigation. Here each of the
aperiodic systems has been studied taking three kinds with
constant number of barriers. The electron effective masses
in the two host materials are m∗

1 = 0.065m0 (in the well
region) and m∗

2 = 0.0919m0 (in the barrier region), m0 being
the free electron mass. The lattice constants, i.e., cell widths
for the well and barrier materials, are considered as 5.6533 Å
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Figure 1. Plot of the QRTL (τ ) versus the applied dc electric field
(E) for the block PSL using a GaAs–Al0.3Ga0.7As system with
N = 8. L1 (open square, solid line); L2 (solid circle, dashed line);
L3 (solid square, solid line); L4 (solid triangle, solid line); L5 (open
circle, dashed line); L6 (open triangle, solid line); L7 (open inverted
triangle, dashed line): L1–L7 correspond to the quasi-resonant
energy states (e.g., 1 for the minimum energy state) in the miniband.

and 5.5564 Å respectively. The homogeneous electric field
applied across the structure has been varied from 1 V m−1 to
2 MV m−1. For the zero-field case, the calculation based on the
Airy function is not possible, as the argument of the function
contains the field parameters in the denominator. Our present
numerical results for the field 1 V m−1 become identical (up
to three significant decimal digits) to the results of analytic
calculation for unbiased conditions by Nanda et al [13]. So, for
all practical purposes, the electric field 1 V m−1 can be treated
in our model as the unbiased condition (field-free case).

5. Results and discussion

The quasi-resonant tunneling lifetime is numerically computed
on the basis of (3.6) for GaAs–Al0.3Ga0.7As superlattices
under a homogeneous electric field varying from 1 V m−1 to
2 MV m−1, with the blocks (A and B) arranged periodically
and quasi-periodically. For the comparison of QRTLs among
the block periodic and various kinds of aperiodic superlattices
(generalized Fibonacci and Thue–Morse), we have selected
N = 8 (figures 1–3). In all the cases the number of peaks in
the miniband (under below-barrier conditions) has been found
to be seven in unbiased condition. This feature is analogous to
the occurrence of (N−1) resonant energy levels in the case of a
field-free N-barrier periodic system [8, 11]. It may be pointed
out that the present approach is more general than our previous
two models [15, 29] in the sense that here the periodic and the
aperiodic superlattices have been generated with the blocks A
and B instead of the simple wells and barriers.

Figure 1 shows the variation in QRTL for all seven levels
in the block PSL with varying dc fields. It may be noted
from the figure that the QRTL for all levels remains almost
constant up to E = 30 kV m−1. This is quite justified since
at this field strength the Stark shift, being of the order of
10−4 eV, is very small compared to the field-free miniband

(a)

(b)

(c)

Figure 2. The same as figure 1 for (a) the first kind (m = 1, n = 1),
(b) the second kind (m = 2, n = 1) and (c) the third kind (m = 1,
n = 3) of GFSLs.

level separation. So the wavefunctions corresponding to these
states remain extended in nature and the coupling between
the wells suffers no significant change. Thus the tunneling
lifetime and hence the velocity remain almost unchanged up
to this field strength. It is also clear from the figure that
the effect of applied bias is first substantially realized by the
outermost wells from the applied field E ∼ 100 kV m−1 and
onwards. So the transmission coefficient and the tunneling

4



J. Phys.: Condens. Matter 20 (2008) 445229 P Panchadhyayee et al

(a)

(b)

(c)

Figure 3. The same as figure 1 for (a) the first kind (m = 1, n = 1),
(b) the second kind (m = 2, n = 2) and (c) the third kind (m = 1,
n = 3) of GTSLs.

lifetime for electrons in the band edge states suffer significant
changes from this field strength. In this region, the magnitude
of the QRTL decreases as one proceeds towards the center
of the miniband. This suggests that an electron with quasi-
resonant tunneling energy, εm, corresponding to the middle of
the band would tunnel out faster than the levels with other
values of εm. This result is analogous to our earlier findings
in the case of a typical periodic superlattice [11, 15]. The

lower lifetime of the mid-band states is the consequence of
the larger group velocity of electrons in these states. For the
typical PSL, the lifetime of each band edge state is found to
decrease with increase in the field. But in the present block
PSL, although the lifetime for the states far away from the
middle decreases with field and dies out quickly, the near mid-
band states in the lower half of the miniband show a prominent
crest where the QRTL reaches a maximum value and then
decreases gradually. This type of crest with a region of positive
differential lifetime or, in other words, negative differential
velocity is absent in periodic superlattices for near mid-band
states. The discrepancy arises due to incorporation of quasi-
periodicity to some extent in the block PSL. At very high fields
(E > 1 MV m−1), like in the periodic case [15], only the
mid-band states survive, so tunneling of electrons takes place
through the mid-band only and the corresponding lifetime
increases linearly with increasing field strength. This feature
can be comprehended as follows. Beyond a certain limit of the
applied field satisfying (1.1) the mid-band states start forming
a partial WSL, consequently increasing the tunneling lifetime
and hence decreasing the tunneling velocity of the carriers
associated with these levels. The band edge states which do
not join the WSL follow the general pattern of increase of
the group velocity and hence decrease in carrier lifetime with
increase of the field. One interesting feature is also to be noted
that, in typical PSL, there exists a characteristic electric field
where all the states have equal value of tunneling lifetime, i.e.,
the electron in each state tunnels with the same group velocity
at that characteristic field [15]. But in the present PSL (block)
such synchronization of carrier velocities for all the states has
not been achieved.

Figures 2(a)–(c) show the variation of the QRTL with the
applied field in all the quasi-resonant energy levels for the
fourth, second and second sequences of first, second and third
kinds of generalized Fibonacci superlattices, respectively. To
make the total length or total barrier numbers of the superlattice
almost identical (N = 8), an additional block A for the second
and third kinds of GFSLs has been appended. Here the initial
variation of the QRTL shows the same features as those in the
case of the present block PSL. From figure 2(a) it is found that
the magnitude of the lifetime at low fields, as compared to the
periodic case, shows an increase for the band edge states but
a decrease for the mid-band states. This indicates that due to
quasi-periodicity the inner wells are more strongly coupled and
the reverse is the case for the outer wells. Here, the near mid-
band states do not show any crest, as observed in the block
periodic case. Thus as far as the variation of the QRTL is
concerned, the first kind of GFSL shows a closer resemblance
to the typical PSL than to the block PSL.

From figures 2(a)–(c) we also find that there is an overall
decrease in magnitude of lifetime for the band edge states
as one proceeds towards the higher kinds of GFSLs. This
can be attributed to the effect of increase in aperiodicity. In
GFSLs of higher kinds, unlike the typical PSL and the block
PSL, the electrons move with the maximum velocity in the
near mid-band state rather than the mid-band state. Here the
electrons in the near mid-band state ‘prefer’ to move with the
maximum velocity unlike the mid-band state case. The three
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kinds of GFSLs also show a remarkable change in the variation
of the QRTL at around E = 600 kV m−1. Some of the near
band edge states in the higher kinds of GFSLs show a crest
where the tunneling lifetime reaches a maximum value and
then decreases. The region of positive differential lifetime is
absent in PSLs for near band edge states whereas it becomes
prominent for higher kinds of GFSLs. For the mid-band states
this region appears at a field strength E > 1 MV m−1.

Figures 3(a)–(c) depict the variation of the QRTL with
field for three different kinds of generalized Thue–Morse
superlattices having the same numbers of barriers (eight). Here
also the lifetime remains almost constant, like the previous
ones, up to the field E = 30 kV m−1. For a given state (except
for the band edges), we notice that the QRTL at low fields
decreases as one approaches from the lower to the higher kinds
of GTSLs. Like for the GFSLs of higher kinds, some of the
states in the GTSLs of lower kinds show a positive differential
lifetime region before their disappearance. The peak height
in this region for higher fields also decreases (near band edge
states) for higher kinds and tends to vanish. Thus the degree of
quasi-periodicity in the cases of GFSLs and GTSLs affects in
reverse order the middle and near edge states of the miniband.

Since the magnitude of the QRTL is different for different
states in a miniband, we have finally calculated the mean or
average value of the QRTL associated with a miniband for
different superlattice structures. Figures 4(a) and (b) represent
the variation of the average QRTL against the applied field
for the different kinds of GFSLs and GTSLs, respectively,
along with the corresponding variation for the block PSLs.
From these two figures we notice that up to low field strength
(E < 30 kV m−1) the average lifetime remains almost constant
as explained previously and then it decreases with increase of
the field strength. After reaching a minimum value, it finally
rises abruptly with increasing field. This general variation
occurs for all systems considered. Looking at figure 4(a)
we find that the first kind of GFSL has lower average group
velocity than the other two kinds and it is almost equal to
that of the present PSL (block) up to the field strength, E ∼
100 kV m−1. This shows that the greater quasi-periodicity
enhances the average coupling between the barriers. With
increase in the quasi-periodicity the net effective potential
decreases, thereby increasing the average tunneling velocity
of electrons in the aperiodic superlattices. Thus a fractal-like
energy spectrum causes the electrons to move with greater
velocity within a miniband. The difference in average QRTL
among the different kinds of GFSLs becomes minimal around
the field E ∼ 800 kV m−1, i.e., at this field the different quasi-
periodic systems come close in effect as far as the average
tunneling lifetime is concerned. In the case of GTSLs such
resemblance has been found for higher kinds. It is interesting to
note that the minimum value of the average lifetime in almost
all cases lies around 0.3 ps. This value has been found to be
in good quantitative agreement with that for the PSL [15] with
N = 8 (not shown). In view of the above discussion, we may
infer that the fractal-like energy spectrum of ASLs approaches
to the PSL spectrum within a certain field range (700 kV m−1–
1 MV m−1). Further, the variation of the average QRTL for
the first kind of GFSL shows very close proximity to that for

(a)

(b)

Figure 4. Plot of the average QRTL versus the applied dc electric
field (E) using a GaAs–Al0.3Ga0.7As system with N = 8. Curves are
given for the first kinds (open circle, dashed line), the second kinds
(solid triangle, solid line) and the third kinds (open inverted triangle,
dashed line) of (a) GFSLs (b) GTSLs. The solid square and solid line
represent the curve for the block PSL.

the third kind of GTSL, though they are two extreme cases of
the two different ASLs under consideration. The variation in
average lifetime with the applied field is also maximal in these
two cases. Since the sharp variation of the QRTL (average)
near its minima is exploited for device applications, we can
therefore conclude that the first kind of GFSL and the third
kind of GTSL are most suitable for the design of resonant
tunneling devices. As higher kinds of ASLs being more
aperiodic in nature, the above findings show that the periodicity
of the GFSL and the quasi-periodicity of the GTSL promise
well for device applications.

Figures 5(a) and (b) show the variation in average QRTL
for three consecutive generations of the first kind in the case
of the GFSL and the GTSL, respectively. The corresponding
barrier numbers for GFSLs are chosen as N = 5, 8 and 13,
whereas they are 4, 8, and 16 for the GTSLs. Both figures
show that for all field strengths the average QRTL increases
with increase in the barrier number and this is natural, due to
the increase in effective length of the superlattices. All the
curves show a minimum which corresponds to the maximum
average velocity of electrons attainable in the superlattice for
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(a)

(b)

Figure 5. Plot of the average QRTL versus the applied dc electric
field (E) for the first kinds of (a) GFSLs and (b) GTSLs using a
GaAs–Al0.3Ga0.7As system, with different numbers of barriers (N).

a given number of barriers. The increase in barrier number
causes the oscillation in the average lifetime at high fields and
the appearance of a sharper minimum. The higher the value
of N for a particular type of ASL, the lower the value of the
field strength at which the minima occur. Although the positive
differential lifetime region at moderate fields disappears in
the average result, this region, which corresponds to negative
differential velocity for higher fields, becomes sharper with
increase in the barrier number. The existence of minima in the
average lifetime curve and sharp positive differential lifetime
regions may help experimentalists to select the field strength,
the type and the number of barriers in the ASL for optimum
performance of resonant tunneling devices.

6. Conclusion

An attempt has been made to explore the impact of quasi-
periodicity on the resonant tunneling lifetime in electrically
biased semiconductor superlattices. We have addressed various
important issues regarding quasi-periodicity to explore new
directions for analyzing high-speed semiconductor devices.
The use of block periodic and aperiodic superlattices is

one of the aspects providing present motivation. It has
been established that the block PSL is to some extent
quasi-periodic, unlike the PSL. The incorporation of quasi-
periodicity modifies the internal potential of the system in
the presence of external dc fields and gives rise to extra
regions of positive differential lifetime for some of the quasi-
resonant energy levels. In the case of generalized Fibonacci
and Thue–Morse superlattices the degree of quasi-periodicity
affects in reverse order the middle and near edge states of the
miniband. But the electric field tunes the different aperiodic
systems in such a way that the average tunneling lifetimes
become almost identical at a certain field regime irrespective
of aperiodicity. Thus a particular range of applied field causes
the fractal-like energy spectrum to disappear. The rate of
increase of the average group velocity (near its maxima) with
the applied field has been found to be strongly dependent
on the quasi-periodicity. This observation is an interesting
outcome of the present theoretical investigation into ballistic
transport of carriers through an ASL. We have finally come to
the conclusion that the lower kind of GFSL and the higher kind
of GTSL are the most suitable for resonant tunneling device
applications. In particular, the presence of sharp minima for
higher number of barriers is very important in the context of
analyzing the device properties of ultrahigh-speed electronic
and optoelectronic devices.
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